The University of Jordan School of Engineering Computer Engineering Department Fall Semester 2021/2022

Course	Data Structures and Algorithms –0907346 (3 Cr. – Core Course)		
Catalog Description	Asymptotic notation, stacks, queues, elementary sort, divide-and-conquer, merge sort, quick sort, heaps, priority queues, heap sort, symbol tables, binary search trees, hash tables, separate chaining, linear probing, undirected and directed graphs, breadth-first search, depth-first search, Dijkstra's algorithm.		
Prerequisites by Course	0907342		
Prerequisites by Topic	 Students are assumed to have had sufficient knowledge pertaining to Explain basic elements in programming, such as assignments, expressions, control statements, and loops Write and test Java programs 		
Textbook	Robert Sedgewick and Kevin Wayne, Algorithms, 4 th Edition, Addison-Wesley Professional, 2011		
Additional References	 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein,Introduction to Algorithms, Third Edition, MIT press, 2009. Y. Daniel Liang, Introduction to Java Programming and Data Structures, Comprehensive version, 11th edition, Pearson, 2017 		
Website	Ramzi.ucoz.com		
Schedule & Duration	Section 1: 15 Weeks, 30 lectures, 75 minutes each (including exams)		
Office Hours	Sun, Tue, Thu 10:30 – 11:30		
Student Material	Text book, class handouts, lecture notes, and any additional reading assigned by the instructor		
College Facilities	Classroom with whiteboard and projection display facilities, library, and compute laboratory.		
Course Objectives	 The objectives of this course is to help students to: Use mathematical models to analyze the performance of algorithms Demonstrate an understanding of basic data structures and algorithms Demonstrate an ability in using knowledge of data structures and algorithms to use programming for solvingmathematical and engineeringproblems. 		

Course Outcomes and Relation to ABET Program Outcomes	Upon successful completion of this1. Explain the fundamental conception algorithms [1].2. Formulate and implement algorithm and memory constraints [1].	n successful completion of this course, a student should be able to: Explain the fundamental concepts of commonly used data structures and algorithms [1]. Formulate and implement algorithms to solve programming problems under time and memory constraints [1].		
Course Topics	 Analysis of algorithms and asyn Linked Lists, Resizing-arrays, Q Selection sort, insertion sort, m Heaps,Priority Queues and heap Symbol tables: binary search tr Undirected and directed graphs [sections 4.1, 4.2] Shortest-path problem and Dijk 	Analysis of algorithms and asymptotic annotations [section 1.4] Linked Lists, Resizing-arrays, Queues and Stacks [section 1.3] Selection sort, insertion sort, merge sort, quick sort [sections 2.1, 2.2, 2.3] Heaps,Priority Queues and heap sort [section 2.4] Symbol tables: binary search trees and hash tables [sections 3.1, 3.2, 3.4] Jndirected and directed graphs, breadth-first search, and depth-first search Sections 4.1, 4.2] Shortest-path problem and Dijkstra's algorithm [section 4.4]		
Computer Usage	Practical aspects of the course will be covered by programming assignments			
Policies	 Attendance is required. Class at university's policywill be enfort All submitted work must be you Cheating will not be tolerated All materials and announcement Check department announcement http://www.facebook.com/page Department/36963965646610 	Attendance is required. Class attendance will be taken every class and the university's policywill be enforced in this regard All submitted work must be yours Cheating will not be tolerated All materials and announcements will be posted on Ms Teams Platform Check department announcements at: http://www.facebook.com/pages/Computer-Engineering- Department/369639656466107 for general department announcements.		
Grading policy	Quiz	10%		
	Programming assignments Midterm Exam Final Exam	10% 30% 50%		
Instructors	structorsDr. Ramzi Saifan Room: CPE 418Office Hours: S T TH, 10:30 – 11:30			
Program Outcomes (PO)	1an ability to identify, formulate, an of engineering, science, and mather an ability to apply engineering d consideration of public health, environmental, and economic factor 33an ability to communicate effective an ability to recognize ethical an make informed judgments, which economic, environmental, and social an ability to function effectively on collaborative and inclusive environ 66an ability to develop and conduct use engineering judgment to draw an ability to acquire and apply new	d solve complex engineering problems by applying principles natics esign to produce solutions that meet specified needs with safety, and welfare, as well as global, cultural, social, rs ly with a range of audiences d professional responsibilities in engineering situations and must consider the impact of engineering solutions in global, etal contexts a team whose members together provide leadership, create a ment, establish goals, plan tasks, and meet objectives appropriate experimentation, analyze and interpret data, and conclusions knowledge as needed, using appropriate learning strategies.		
	/ an assing to acquire and apply new	of as needed, asing appropriate rearining strategies.		